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BACKGROUND 
 
  Robotic mapping is an important capability for a variety of purposes. Robots can explore 
areas that are too dangerous or contaminated for humans to explore. People can use maps that the 
robots make of such areas to plan missions and activities to be performed in these areas. For 
example, in law enforcement and military applications, a robot could be used to explore and map a 
structure in preparation for entrance into that structure. Robots could also be used to explore 
structures contaminated with radioactivity or other contaminants.  
 
  As a robot travels through a new environment in order to map it, the robot must continually 
update the map as it gathers new information. In addition, it may encounter objects or locations of 
interest as it travels and must record their location for future reference. Thus, the robot must 
simultaneously map the environment and localize itself within that environment in order to record the 
location of places of interest. The discipline of simultaneous localization and mapping (SLAM) has 
been studied intensively over the past several years.  
 
 Many technical approaches have been proposed to the SLAM problem, each using a 
particular set of sensors on the robot. The simplest method for a robot to localize itself is to use a 
receiver for a global navigation satellite system (GNSS), such as global positioning system (GPS), 
Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS - a Russian satellite-based 
navigation system), Galileo, and/or Bei Dou. In addition to GNSS receivers, commonly used sensors 
are visual cameras (refs. 1 and 2), light detection and ranging (LIDARs) (refs. 3 and 4), inertial 
measurement units (IMU) like gyroscopes and accelerometers, odometry sensors, and even 
sometimes magnetometers (refs. 5 through 7) and barometers (ref. 1).  
 
 In some environments, such as indoor environments, GNSS signals are not available. These 
environments are sometimes referred to as GPS-denied. In such environments, the robot must rely 
on its onboard sensors in order to localize itself and make an accurate map. Generally, IMU signals 
are fused with camera and/or LIDAR data to derive an estimate of the robot’s location at any given 
time. However, noise in IMU signals causes the calculated robot position to drift over time. This 
cumulative drift error results in erroneous maps. One type of map error is incorrect loop closure, i.e., 
when the robot returns to a place it has previously visited, it “thinks” it is in a different location. For 
example, if the robot drives in a large circular path and returns to its starting point, the calculated 
trajectory will not be closed, though it should be. Figure 1 shows a conceptual illustration of how a 
trajectory calculation error can lead to an incorrect loop closure. 
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Figure 1 
Conceptual diagram showing incorrect loop closure due to drift 

 
  One way to correct drift error is to recognize, using sensors besides the IMU, when the robot 
is revisiting a place that it had previously visited. If the robot could recognize a previously visited 
place, then it could inform the mapping system to close the loop and to close the trajectory so that 
both the previous and current visits are denoted by the same point on the map.  
 
 How can the robot recognize a revisit to a place? This question is referred to as the place 
recognition problem and is sometimes referred to as the loop closure detection problem. In general, 
this problem is addressed by defining some type of feature descriptor and cataloging the descriptor 
content of each place that is visited. Every time a new place is visited, the feature descriptor (or set 
of descriptors) is calculated for that place. The newly calculated set of descriptors is then compared 
with previously measured descriptor sets in search of a match. If a tentative match is found, the 
quality of the match is determined and compared to a threshold value in order to make a decision 
whether or not this is indeed a previously visited place. 
 
 If a place recognition is made, then the two points (the originally and currently calculated 
locations) are passed to a trajectory modification program. The trajectory modification program 
adjusts the trajectory so that it smoothly connects the originally and currently calculated locations. 
This trajectory correction completes the map correction that is performed as a result of the place 
recognition (ref. 8). 
 
 A variety of feature descriptor types for various types of sensor data have been proposed, 
e.g., normal aligned radial features (ref. 3), speeded-up robust features (ref. 9), surface entropy (ref. 
10), normal distribution transform (ref. 11), and signatures of histograms (ref. 12). In order for a 
descriptor to be effective in characterizing a particular type of environment, that environment must 
have some uniquely identifiable features that can be represented in terms of that descriptor. For 
example, in order to use an edge detector, the environment must have edges in it, and different 
locations in the environment must have unique patterns of edges. That is the only way a particular 
location can be reliably recognized upon a revisit. 
 

Start point 
and actual 
end point 

Calculated 
end point 

Calculated 
trajectory 

Actual 
trajectory 
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 If the robot uses IMUs with cameras and/or LIDARs to map a featureless environment such 
as a network of hallways or tunnels, then no currently used feature descriptor can reliably 
characterize locations in the environment. This work presents new types of feature descriptors that 
can be used in such environments to recognize places. These descriptors can be used in featureless 
environments with hallways that have nominally parallel walls.  
 
 This work complements other work on indoor and outdoor mapping in GPS-denied 
environments. Some sensors and descriptors work better indoors, and some work better outdoors, 
but so far, to the author’s knowledge, very little has been published on an effective and reliable 
descriptor for the featureless hallway or tunnel environment.  
 
 Reference 13 does present an approach for using trajectory features for place recognition, 
which is similar to the approach of the first of the three algorithms presented here. The approach of 
reference 13 characterizes “regular patterns” in the trajectory and tries to recognize previously 
traveled trajectory segments with the same pattern. That type of feature does not clearly distinguish 
between different but similar trajectory segments and can lead to many false positive judgments. In 
the experiment, six out of thirty loop candidates were incorrect. The approach presented here for 
trajectory based place recognition seems that it would more unambiguously recognize corners in the 
trajectory. However, the weakness of the approach in reference 13 is also its strength – it can 
recognize features in many different types of paths, not only paths with corners in them. Thus, that 
approach is in a sense complementary to the approach presented here, which clearly identifies 
corners, but recognizes only corners. 
 
 The work presented here could be combined with currently available place recognition 
approaches to create an (almost) all-environment mapping system. The reason for saying “almost” is 
that there is one type of environment in which place recognition does not seem to be feasible using 
just optical and/or LIDAR sensors, and that is a large, empty, featureless setting. In such a setting, 
perhaps a magnetometer or other type of sensor could be used together with inertial sensors for 
improved place recognition. 
 
 

SUMMARY 
 

 The problem that the algorithms presented here address is how a robot equipped with an 
IMU, and possibly a LIDAR sensor, that is travelling in a walled, featureless environment can 
recognize a place that it has previously visited during the current excursion. This problem is 
important for robots that are mapping such environments because accurate place recognition helps 
the mapping algorithm to partially correct errors in the map that are due to drift in the IMU data. 
 
 This report presents three algorithms that use LIDAR and IMU data to extract relevant 
information about the environment in order to form descriptors of each visited place. Then, each time 
the robot visits a new place, it compares its newly measured descriptor with a selected set of 
previously measured descriptors to determine whether a place recognition has occurred. If the 
algorithm determines that place recognition has occurred, it passes the descriptor of the newly 
visited place, the descriptor of the previously visited place, and a matching score to an external 
mapping program. 
 
 The main novelty of this work is the formulation of descriptors for such apparently featureless 
environments. The descriptors are based on detected corners and junctions in the hallway structure 
in which the robot is travelling. In addition, this work presents techniques for comparing different 
instantiations of the descriptors to determine how well they match. 
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  Although many algorithms have been published on place recognition in feature rich 
environments, to the author’s current knowledge, place recognition in featureless, walled 
environments has not been addressed in the published literature. This work could significantly 
expand the set of environments in which automated place recognition can occur. However, due to 
programmatic constraints, these algorithms have not yet been implemented in computer code, so 
their true utility has yet to be discovered. The author recommends that these algorithms be 
implemented, and refined and revised if necessary, in order to enable robots to effectively explore 
new regions. 

 
 

INTRODUCTION 
 

 
 The algorithms presented here are useful for place recognition and loop closure detection in 
situations in which a robot is driving in a network of possibly featureless hallways with nominally 
parallel walls. The purpose of this report is to present a detailed description of the algorithms so that 
other researchers could implement them or some variant of them and/or build on them to give them 
more capabilities. 
 
 This report presents the concepts of the three algorithms using verbal descriptions, diagrams, 
and flowcharts to illustrate the concepts. The algorithms will henceforth be referred to as (1) the 
trajectory based algorithm, (2) the LT-junction based algorithm, and (3) the general junction based 
algorithm. 
 
 The next three major sections describe the concepts, as well as the advantages and 
disadvantages, of each of the three algorithms. The first major section describes the trajectory based 
algorithm. This algorithm is useful for place recognition in situations in which a robot is driving in a 
network of featureless hallways that constrains its motion to either nominally straight line driving 
(with some meandering, possibly) or turning from one path segment onto another. The ground 
surface on which the robot drives is assumed to be nominally flat, and therefore, the environment for 
all three algorithms is represented as a two-dimensional (2D) world. 
 
 This algorithm is the most versatile of the three since it does not explicitly assume anything 
about the walls other than that they constrain the robot to move in fairly straight line path segments 
with well defined turns. However, consideration of the characteristics of junctions in the path as 
defined by wall contours can greatly assist in place recognition. Consideration of such junctions will 
add some complexity to the algorithm and is addressed in the two junction based algorithms. 
 
 The second major section describes the LT-junction based algorithm. The algorithm has this 
name because it detects junctions that have two legs – denoted as L-junctions and those that have 
three legs – denoted as T-junctions. This algorithm treats a junction shaped like a plus sign (+) as two 
back-to-back T-junctions. This algorithm uses more environmental information than the trajectory 
based algorithm. However it could be further improved by considering junctions with arbitrary 
numbers of legs. 
 
 The third major section describes the general junction based algorithm. This algorithm can 
detect junctions with arbitrary numbers of legs but requires an additional preprocessing step for the 
input data that the LT-junction based algorithm does not have. It requires a 2D visual image of the 
area that has been traversed so far to be produced. 
 
 Each of the three major sections first describes the overall concept of the presented 
algorithm. The section after that describes the type of data that is input to the algorithm and 
preprocessing steps that are required to enable derivation of the descriptor values from the input 
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data. The next section presents the feature descriptor that is used to represent the key information 
about visited places and shows how it is derived from the preprocessed input data. The section after 
that describes the process for comparing descriptors to determine how well they match each other. 
The final section describes the derivation of the output data to pass to a trajectory adjustment 
program, which uses the place recognition information to recalculate the previously calculated 
trajectory.  

 
 

METHODS, ASSUMPTIONS, AND PROCEDURES  
 

 This section describes in detail the trajectory based algorithm, the LT-junction based 
algorithm, and the general junction based algorithm for place recognition in walled, featureless 
environments.  
 
Trajectory Based Algorithm 
 
 This section describes, for the trajectory based algorithm, the input data and its 
preprocessing, the feature descriptor and its derivation from the preprocessed input data, the 
descriptor comparison process, and the derivation of output data.  
 
 The trajectory based algorithm uses as simple and broadly applicable an approach as 
possible. This approach uses features of the trajectory itself to represent visited places. That is, at 
each increment of the robot’s travel, the algorithm uses a sliding buffer to determine whether the 
robot has made a turn. It does this by calculating a straightness score for all the poses in the buffer. 
The score is based on the mean squared deviation of all the poses from the best fit line. A large 
straightness score means a nonstraight line. 
 
 A corner is detected when the straightness score increases to a peak and then decreases 
again. If the peak is higher than a user-defined threshold, then it is accepted as a corner. The 
threshold prevents gentle curves in the trajectory from being considered as corners. Since we are 
looking for maxima in the straightness score, we cannot immediately determine whether we are at a 
corner. We must travel some distance beyond the corner in order to determine whether we have 
traversed a corner. The situation is analogous to the way economists cannot determine whether we 
have entered or recovered from a recession until several months after the event since only then can 
they identify patterns in prior data. 
 
 A database of detected corners is maintained, and new candidates are compared with 
detected corners according to some similarity metrics. The highest scoring candidate, if its score is 
above a user-defined threshold value, is considered a recognized place. If a place recognition is 
made, the trajectory is to be updated (by a separate program) to indicate that the actual corner 
location is the location that was estimated in the original visit to that corner.  
 
 Input Data and Preprocessing for Trajectory Based Algorithm 
 
  The input data for the trajectory based algorithm is a time stamped sequence of 2D 
robot poses. Each pose is of the form (x, y, θ, t), where x and y are the 2D coordinates of the center 
of the robot projected onto the ground in a global frame of reference, θ is orientation angle of the 
robot, and t is the time at which the pose data was measured. As the robot drives along, the pose is 
measured and recorded at regular intervals, resulting in a continuous stream of pose data.  
 
 A moving buffer is used to store the most recently recorded set of consecutive pose values, 
denoted by pi , where i is the index of the pose. The user is free to choose how many elements the 
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buffer contains, but for illustrative purposes, in this report it will be assumed to have eleven values, 
as shown in figure 2. 
 
 
Before mapping: 

0 0 0 0 0 0 0 0 0 0 0 0 

 

After 1 step: 

0 0 0 0 0 0 0 0 0 0 0 p1 

 

After 11 steps: 

0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 

    

After 12 steps: 

p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 

    

Figure 2 
Initialization and incrementing of buffer 

 
 In figure 2, each element pi is a pose of the form (x, y, θ, t).  Before the robot begins mapping, 
all elements are zero. As each new pose pi is recorded, it is placed in the highest (eleventh, in this 
example) element of the buffer and the lowest (oldest) element of the buffer is dropped. The purpose 
of this buffer is to provide data for continual calculation of the straightness score matrix, which 
characterizes the local straightness of the trajectory. 
 
 The straightness score matrix S is used to calculate turning angles when turns in the 
trajectory are detected. Like the buffer data, the straightness score matrix could be a moving buffer, 
but for simplicity, in this example it is assumed to be a continually expanding matrix. Before the robot 
begins mapping, all elements of the straightness score matrix are zero. Once the robot has mapped 
eleven poses, the algorithm begins to calculate straightness scores. Each score is associated with a 
specific pose, and the score is the straightness of the set of poses consisting of that pose plus the 
ten prior poses. 
 
 The straightness score matrix has two rows. For each column j, row 1 holds a straightness 
score si , which is calculated from a set of eleven poses. Row 2 holds the index of the most recent of 
those eleven poses. New straightness score data is inserted in the higher elements of the matrix S. 
Figure 3 illustrates how elements of the straightness score matrix are associated with corresponding 
buffer vector elements. 
 
  

New 

pose 

data 



 

 

Before mapping: 

Buffer:   

0 0 0 0 0 0 0 0 0 0 0 0 

Scores:    

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

After 11 steps: 

Buffer: 

0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 

   Scores: 

s1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

After 12 steps: 

Buffer: 

p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 

   Scores: 

s1 s2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 

Figure 3 
Association of straightness score matrix with buffer data
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 The straightness score is calculated from the buffer values according to the procedure shown 

in figure 4.  

 

 

While at pose j,

Find best fit line to 

the points B[n] for 

n = 1 to 11

BUFFER

(Array B of 

consecutive 

poses)

Line L

Calculate 

straightness score 

for the points B[n]

                                         11 

S(1,j) = (1/ Δp)
2
 * (1/11) * Σ (distance from B[n] to L)2 

                                        n = 1

S(2,j) = j

 

Figure 4 
Straightness score calculation 

 
 Let the buffer vector be denoted as B(n), where n ranges from 1 to 11. The first task in 
calculating the straightness score is to find the best fit line L to the eleven points in the buffer; only 
the x and y elements of the poses are used in this calculation.  
 
 The next task is to calculate the corresponding values of the straightness score array, S. For 
a particular column index j, S(1, j) is a straightness score and is derived from the set of eleven (x, y) 
points of pose data in the buffer, as illustrated in figure 3. S(1, j) is defined as the normalized (to the 
robot’s step distance Δp) mean squared distance from each of the eleven points to the best-fit line L.  
 
                                                                     11 
 S(1, j) = (1/ Δp)2 * (1/11) * Σ (distance from B[n] to L)2        (1)  

                                                       n=1 
 

 The second row element of S at column j is the pose index of the final buffer element that 
was used to calculate S(1, j), as illustrated in figure 3. Thus, 
   
               -        (2)  

 where Nb is the number of elements in the buffer.                             

 
 Feature Descriptor and its Derivation for Trajectory Based Algorithm 
 
  The feature descriptor for the trajectory based algorithm is the data shown in table 1 
about each detected corner in the trajectory. 
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Table 1 
Descriptor values for trajectory based algorithm 

 
Descriptor values for trajectory based algorithm Variable name for descriptor value 

Overall designation of ith corner descriptor Ci 
(x, y) coordinates of the vertex Ci.x, Ci.y 

Vertex angle Ci.θ 

Angular orientation of each leg in a global 
reference frame 

Ci.αL1, Ci.αL2 

Time when the corner was traversed Ci.t 

 
 In table 1, the notation is borrowed from concepts in object oriented programming. The corner 
descriptor Ci is conceptualized as an object whose members are the vertex coordinates x and y, the 
vertex angle θ, the traversal time t, as well as the angular orientations of the two legs, αL1 and αL2 
connected to the vertex. The following is a description of how these pieces of information are 
derived. 
 
 As described previously, as the robot travels and each new pose is recorded, the buffer is 
updated with the new pose data and the time when the data was measured. Then, the straightness 
score is calculated using the current pose plus the ten immediately prior poses, as shown in equation 
1. The new straightness score is then saved in the matrix S (fig. 3). 
 
 At this point, now that the straightness score matrix S has been updated with the latest data, 
prior values in the matrix are reviewed to determine whether a corner is present in the recent parts of 
the trajectory. The next task is to determine whether the matrix of straightness scores indicates the 
presence of a corner, and this is done as follows. The straightness score corresponding to a 
particular trajectory element is the deviation of the trajectory from the locally best fitted line to the 
past 11 trajectory elements. A corner would be recognizable as a local maximum in that deviation. 
Thus, we are looking for a local maximum in the elements of the straightness score matrix that 
correspond to the past several trajectory elements. 
 
 How far back in the trajectory we look for corners depends on the “size” of a corner in terms 
of the number of trajectory steps.  In the example presented here, we assume that complete 
traversal of a corner can take as many as seven steps. Therefore, the next step in the algorithm is to 
examine the past seven values of the second row of S to see whether it has a maximum that 
exceeds a user-defined threshold value, minStraightnessVal. Recall that the score values of S in its 
first row are dimensionless – the deviation of the trajectory points from the local best-fit line is 
normalized to the step size in the trajectory.  
 
 A dimensionless threshold can be selected for use in evaluating the value of S in its first row, 
seven steps ago.  The value of this threshold should be selected based on an experimental study of 
robot trajectories, while traversing corners of various angles. The threshold should be high enough to 
filter out gentle curves in the trajectory, e.g., those due to the robot’s meandering, but it should also 
be low enough to enable recognition of genuine corners. 
 
 In the corner detection procedure, three questions (to be specified shortly) are asked in order 
to determine whether a corner should be defined in connection with the straightness score S(1, m), 
where m is the index of the current trajectory element of the robot. Since we are looking at the past 
seven trajectory elements, we need to examine elements S(1, m-6) through S(1, m) of matrix S to 
determine whether there is a clearly defined local maximum among these values.  In particular, we 
examine the middle of these seven elements to determine whether it is a local maximum. Since the 
set of elements of S are examined in a sliding window manner, all elements of S will end up being 
examined in this method. 
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 The middle of the seven elements is S(1, m-3). This element is examined according to the 
following three tests to determine whether it is associated with a corner.  
 
 First, S(1, m-3) is compared to its neighbors in the straightness score matrix according to 
these two criteria  
 

(a) the value of the score S(1, m-3) is greater than or equal to the score of each of its 
closest neighbors, S(1, m-4) and S(1, m-2), and 
 

(b)  S(1, m-3) is greater than all of these more distant neighbors: S(1, m-6), S(1, m-5), 
S(1, m-1), S(1, m).  
 

 Second, if S(1, m-3) is a local maximum according to the first test, it is compared to the 
threshold value to determine whether it is a sharp enough maximum. If S(1, m-3) is above threshold, 
and is also greater than its neighbors as described, then a corner detection has occurred.  
 
 This corner, together with its data shown in table 1, will be cataloged in a “Junction 
Database,” as described in the next section. The only situation where this corner would not be 
cataloged is when it had been previously cataloged during this excursion of the robot. Thus, the third 
test is whether this corner has already been cataloged. 
 
 The corner detection scheme described previously is illustrated in figure 5.  
 

While at pose m, examine the past 7 scores in the straightness score matrix; look for an above-threshold maximum

Score 

vector S

Compare element 

S(1, m-3) to its 

adjacent values

The comparison test is:

S(1, m-3) > S(1, m-4), S(1, m-2)

S(1, m-3) > S(1, m-6), S(1, m-5), 

S(1, m-1), S(1, m)

If all these conditions are true, 

then S(1, m-4) is considered a 

maximum.

S(1, m-3) is a 

maximum?

There is no new 

above-threshold 

maximum here

NO

S(1, m-3)  is 

above the 

threshold?

YES

The threshold ensures that 

very low maxima, which 

represent gentle curves in 

the trajectory, are not 

considered corners.

Has the corner 

whose vertex is 

associated with 

S(1, m-3)  been 

cataloged 

already?

YES

YES

Search the 

CORNER 

DATABASE for 

this vertex.

There is an above-

threshold 

maximum here

NO

NO

 

Figure 5 
Corner detection procedure for trajectory based algorithm 

 
 There are two possible outcomes of the corner detection process shown in figure 5: either 
there is or is not an above-threshold maximum at S(1, m-3).  If there is not such a maximum, then no 
further processing is done at this step, and the robot travels to the next step in its trajectory. If there 
is such a maximum, the next task is to derive the descriptor data shown in table 1. 
 
 The first piece of data to be calculated is the vertex of the corner. We know that S(1, m-3) is a 
local, above-threshold maximum. This straightness score is derived from the past eleven trajectory 
values that are in the buffer, i.e., m-13 through m-3.  We shall define the vertex of the corner as 
being the middle trajectory element of this set, i.e., m-8.  
 
 The next task is to determine coordinates for the legs of the corner. The legs are defined as 
the best fit line segment for two sets of trajectory elements – those traversed right before 
encountering the vertex and those traversed right afterward. That is, one leg, called L1, is the best fit 
line segment for trajectory elements m-13 through the vertex, m-8. The other leg, called L2, is the 
best fit line segment for the vertex, trajectory element m-8 through the trajectory element m-3. Once 
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the coordinates of the line segments L1 and L2 are determined, the angle between them can be 
found from trigonometry. Although the angle is not an independent number from the data for L1 and 
L2, it is convenient to retain it as part of the corner descriptor since it is used later in the algorithm to 
compare two descriptors. 
 
 The process for calculating the data for a corner descriptor is summarized in figure 6. 
 

.

S(1, m-3) , 

which has 

been found 

to be a local 

maximum

Find the vertex of 

the corner 

associated with 

S(1, m-3) 

Find the legs of 

the corner 

associated with 

pose m-8 

Find the angle 

between L1 and L2 

(i.e. the corner angle), 

and the orientations 

of L1 and L2

Vertex 

coordinates, 

vertex 

angle, leg 

orientations,  

time when 

corner was 

traversed

Figure 6 
Descriptor data calculation procedure 

 
 At this point in the algorithm, all the data for the descriptor corresponding to the current pose 
in the trajectory (table 1) has been calculated. As each new descriptor is calculated for turns made in 
the trajectory, the new descriptor is cataloged in a Junction Database. This database is a repository 
of all previously made turns and is used in comparing newly made turns with previously made turns 
to determine whether place recognition has occurred. 
 
 Descriptor Comparison Process for Trajectory Based Algorithm 
 
  The next task is to compare the newly calculated descriptor with descriptors from 
previous poses in the trajectory. For long trajectories, it can be computationally intensive to compare 
the new descriptor with every descriptor that was ever calculated. Therefore, it would be useful to 
define a search region, i.e., a subset of previously calculated descriptors to use for descriptor 
comparisons. This subset would consist of the set of cataloged descriptors that are most likely to 
match the current descriptor. To define some terminology that will simplify the discussion, the 
currently measured descriptor will be called the “target descriptor” CT, and the descriptor in the 
Junction Database with which the target descriptor is being compared will be called the “candidate 
descriptor” CC. 
 
 The following criteria are used to select which descriptors in the Junction Database are most 
likely to match the current descriptor and will therefore be compared in detail with the current 
descriptor 
 
 Criterion a: |CT.t – CC.t| > tmin (3)  

 Criterion b: |CT.t – CC.t| < tmax (4)  

 Criterion c: ( (CT.x – CC.x)2  + (CT.y – CC.y)2 ) ½  > dmin (5)  

 Criterion d: ( (CT.x – CC.x)2  + (CT.y – CC.y)2 ) ½   < dmax (6)  
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 Criterion (a) states that the difference in traversal times between the target and candidate 
descriptors is greater than a user-defined threshold, tmin. It is possible that the robot will meander a 
short distance from a certain location and then backtrack to that same location. We would not want 
to consider these two visits to that location as a place recognition event. Therefore, criterion (a) 
ensures that we consider only revisits to a certain place that occur at least tmin earlier than the time of 
the current visit.  
 
 Criterion (b) states that the difference in traversal times between the target and candidate 
descriptors is less than a user defined threshold, tmax. The reason for criterion (b) is that we want to 
limit the number of candidates considered in order to reduce the computation time. Therefore, if a 
candidate was traversed a very long time ago, we do not evaluate it for place recognition.  
 
 Criterion (c) states that the distance between the target corner and the candidate corner is 
greater than a user-defined threshold dmin. The intent of this criterion, similar to that of criterion (a), is 
to filter out meanderings. 
 
 Criterion (d) states that the distance between the target corner and the candidate corner is 
less than a user-defined threshold dmax. The intent of this criterion, similar to that of criterion (b), is to 
filter out candidate corners that are very distant from the target corner in order to reduce computation 
time.  
 
 Now that the four criteria for the search region are defined, the Junction Database is 
examined to determine which, if any, candidate descriptors in the search region satisfy all four 
criteria. If no candidates satisfy all four criteria, then no further calculations are done at this step in 
the trajectory, and the robot travels further. 
 
 However, if some candidates that do satisfy all four criteria are found, then these candidate 
descriptors are examined in order to determine how closely they match the target descriptor. Three 
similarity tests are performed on the candidates to determine their similarity to the target descriptor 
(1) proximity of vertices, (2) similarity of corner angles, and (3) similarity of corner orientations. For 
each of these tests, a metric is calculated, and then a matching score is calculated as a weighted 
sum of the three metric values. The metrics and matching score are defined in such a way that the 
lower the value, the better the match. The three metrics are defined as 
 
                   ( (CT.x – CC.x)2  + (CT.y – CC.y)2 ) ½  / Δp (7)  

                     (C
T
.θ – C

C
.θ) / 360 degrees (8)  

                           ( ½ |CT.αL1 + CT.αL2 | -  

                                                           ½ |CC.αL1 + CC.αL2 | ) / 360 degrees 
(9)  

 Each of the three metrics is normalized so that it is a dimensionless number. The proximity 
metric is the Euclidean distance between the vertices of the target and candidate corners, 
normalized to the step size in the trajectory, Δp. The corner angle metric is the difference between 
corner angles of the target and candidate corners, normalized to 360 deg. The corner orientation 
metric is the difference between the centerline orientations for the target and candidate corners, 
normalized to 360 deg. 
 
 The next part of the algorithm calculates the matching score for each candidate and selects 
the candidate with the lowest score. This algorithm assigns greater weights to the proximity metric 
and the corner angle metric than it assigns to the corner orientation metric. That is because drift 
errors in the trajectory calculation tend to cause large-scale errors in the map, in which the angle 
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between the target corners’s legs changes very little, but the entire target corner is rotated in a large-
scale sense. The corner orientation metric is more strongly affected by this type of error than are the 
other metrics. Therefore, if the corner orientation metric is too heavily weighted, then false negative 
judgments would result, in which two corners that actually represent the same location are judged to 
be from different locations. 
 
 Based on these ideas, the suggested weighting to the proximity, corner angle, and corner 
orientation metrics are 0.4, 0.4, and 0.2 respectively. Thus, the definition of the matching score is  
 
                                       

                       

                                   

(10)  

 These weights could, of course, be changed if the situation so warrants. Figure 7 
shows the procedure for scoring the match between the target and candidate corners. The output of 
this procedure is the candidate corner that best matches the target corner and the score that tells 
how well it matches the target corner. 

List of 

candidate 

corners in 

search 

region

Do-loop for each 

candidate corner

Calculate metrics 

for each criterion

Calculate score, 

which is a 

weighted sum of 

the metrics

bestScore = 1000

A more likely loop closure 

candidate will have a lower 

score, so initialize with a 

high score

score < 

bestScore?

bestScore = score;

bestCandidate = 

current candidate;

YES

Continue on and 

consider next 

candidate

NO

Lowest score 

(bestScore) and 

its associated 

candidate 

(bestCandidate)

Figure 7 
Scoring method for evaluation of target and candidate match for trajectory based algorithm 

 
 Once this lowest score is calculated, it is compared with a user-specified threshold value smax, 
which is the largest acceptable score where the match between the target and candidate corners is 
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considered a place recognition. If this lowest score is greater than smax, then there is no viable place 
recognition candidate, so no further calculations are done at this step in the trajectory, and the robot 
travels further. 
 
 Derivation of Output Data for Trajectory Based Algorithm 
 
  If this point in the algorithm is reached, then the best matched candidate is considered 
a recognized place, and the output data that is to be sent to the trajectory correcting algorithm has to 
be calculated. For the trajectory based algorithm, part of the output data is the two alignment points, 
namely, the vertices of the target and best-candidate corners 
 
    p                                         (11)  
 
 The remainder of the output data is the matching score associated with this match. In effect, 
the robot “tells” the trajectory adjustment program, “My calculations show me that I am at the target 
corner, but I think I am at the candidate corner, so please adjust the overall trajectory to co-locate the 
two corners. My confidence in this match is indicated by the matching score.” The complete set of 
output data for the trajectory based algorithm is shown in table 2. 
 

Table 2 
Output data for trajectory based algorithm 

 
Target descriptor, C

T
 

Candidate descriptor, C
C
 

Matching score, matchingScore 

 
 Overall Summary of Trajectory Based Algorithm 
 
  Table 3 summarizes the user selectable parameters for the trajectory based 
algorithm.  

Table 3 
List of selectable parameters for trajectory based algorithm 

 
Parameter description Variable name Assumed value, if 

any 

Robot’s step distance Δp  

Number of elements in buffer  11 

Straightness score matrix number of columns  Indefinitely large 

Number of steps in traversal of a corner  7 

Threshold straightness for identifying corners minStraightnessVal  

Minimum time for search region tmin  

Maximum time for search region tmax  

Minimum distance for search region dmin  

Maximum distance for search region dmax  

Threshold score for place recognition candidates smax  

 
 Figure 8 shows a high level overview of the entire trajectory based algorithm. An advantage 
of this algorithm is that it does not depend on the wall structure, other than the fact that it assumes 
that the trajectory is constrained by some type of wall structure. This algorithm would not be effective 
at all in an unconstrained environment because, in such an environment, a turn in the trajectory has 
no connection with any particular place. 
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Figure 8 

High level flow chart for trajectory based algorithm 
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LT-Junction Based Algorithm 
 
 This section describes, for the LT-junction based algorithm, the input data and its 
preprocessing, the feature descriptor and its derivation from the preprocessed input data, the 
descriptor comparison process, and the derivation of output data.  
 
 The LT-junction based algorithm is useful for place recognition and loop closure detection in 
situations in which a robot is driving in a network of featureless passageways with nominally flat, 
parallel walls that constrains its motion to either nominally straight line driving or turning from one 
path segment onto another. It uses hallway junction characteristics to label and compare visited 
places, and to search for recognized places. 
 
 This algorithm detects junctions shaped like an “L” or like a “T,” though the intersections do 
not need to have right angles as the alphabet letters have. Like the trajectory based algorithm, this 
algorithm maintains a sliding buffer of eleven consecutive poses to enable detection of junction 
features. This algorithm explicitly makes use of wall features; therefore, wall data, as well as 
trajectory data is collected at each step of the trajectory. In particular, the buffer contains pose 
information for each entry (as was the case for the trajectory based algorithm), and it also contains 
data about the local wall segment endpoints and orientations, as well as the distance from the robot 
to each wall.  
 
 The algorithm catalogs each junction it detects into a database and compares newly detected 
junctions to the junctions in the database in order to determine whether a place recognition event 
has occurred. 
 
 Input Data and Preprocessing for LT-Junction Based Algorithm 
 
  The input data for the LT-junction based algorithm consists of two types of data, robot 
pose data and data about the adjacent walls. The pose data is a time stamped sequence of 2D robot 
poses that could be measured by inertial and possibly other sensors. Each pose is of the form (x, y, 
θ, t), where x and y are the 2D coordinates of the center of the robot projected onto the ground in a 
global frame of reference, θ is orientation angle of the robot, and t is the time at which the pose data 
was measured. As the robot drives along, the pose is measured and recorded at regular intervals, 
resulting in a continuous stream of pose data.  
 
 At each pose, data about the wall sections on each side of the robot are measured. One type 
of wall data is the line segment which is the projection – onto the x-y (floor) plane – of the wall section 
that is within the field of view of the robot’s sensors at the current pose. The line segment is 
expressed as a set of (xi, yi, xf, yf, t) points where t is the time of the pose at which that wall section 
was measured. Here xi and yi are the coordinates of the initial point in the segment, and xf and yf are 
the coordinates of the final point. Another type of wall data is the unit normal vector to each segment 
in the x-y plane. Although this unit normal vector is entirely dependent on the wall segment data, it is 
convenient to retain the normal vector data for use when comparing two junction descriptors. Yet 
another type of wall data recorded in the buffer is the distance from the current pose to the nearest 
wall on each side of the robot. All of the wall data can be derived from point cloud data from a LIDAR 
system. The wall data can be obtained by using a plane-based segmentation algorithm on the point 
cloud to extract side walls and then projecting the side walls down onto the x-y plane.  
 
 A moving buffer is used to store the most recently recorded set of consecutive pose values 
and data about the adjacent wall segments. The user is free to choose how many pose values the 
buffer contains, but for illustrative purposes, in this report it will be assumed to have eleven values, 
and therefore, the buffer will have eleven columns, such that each column contains pose data and 
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wall data measured from that pose. Using this number of columns enables collection of enough data 
in order to derive local properties of the wall structure when looking for junctions.  
 
 The buffer has five rows: the top row is the set of consecutive poses of the trajectory that are 
compactly denoted by pi for the ith trajectory step. The second row is wall segment data of points in 
the nearest right wall segment, denoted as WRi for the ith trajectory step. The third row is the wall 
distance to nearest right wall segment, denoted as dRi. The fourth row is the wall segment data of 
points in the nearest left wall segment, denoted as WLi.  The fifth row is the wall distance to nearest 
left wall segment, denoted as dLi.  
 
 Buffer updating works as follows. As data for each new step in the trajectory is recorded 
and/or calculated, the oldest data – the data in the lowest-index column – is discarded, each other 
column of data is shifted to a lower index, and the newest data is inserted into the highest-index 
column.  Figure 9 illustrates the structure and updating of the buffer for the LT-junction based 
algorithm.  Figure 10 shows the process for recording and updating the buffer data. 
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Before mapping: 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

 

After 11 steps:     

0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 

WR1 WR2 WR3 WR4 WR5 WR6 WR7 WR8 WR9 WR10 WR11 

    dR1     dR2 dR3 dR4     dR5 dR6 dR7     dR9 dR9 dR10     dR11 

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10 WL11 

dL1 dL2 dL3 dL4 dL5 dL6 dL7 dL8 dL9 dL10 dL11 

    

After 12 steps: 

p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 

WR2 WR3 WR4 WR5 WR6 WR7 WR8 WR9 WR10 WR11 WR12 

    dR2 dR3 dR4     dR5 dR6 dR7     dR9 dR9 dR10     dR11 dR12 

WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10 WL11 WL12 

dL2 dL3 dL4 dL5 dL6 dL7 dL8 dL9 dL10 dL11 dL12 

 

Figure 9 
Initialization and updating of buffer matrix using wall data 
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Figure 10 
Process for updating buffer data 

 
 Feature Descriptor and its Derivation for LT-Junction Based Algorithm 
 
  The algorithm first determines whether one or both walls have gaps in them by 
examining buffer elements. Such gaps indicate the presence of doorways, hallways, and/or rooms.  
 
 Wall gaps are detected by searching prior buffer data (first data for the right side wall and 
then data for the left side wall1) for maxima in the nearest-wall-distance versus trajectory-pose 

function. Such maxima (if they are above threshold) indicate the presence of a T-junction. It is 
important to first search one wall and then the other, rather than both of the simultaneously, in order 
to avoid the ambiguity of detecting a + shaped junction. In this algorithm, a + shaped junction is 
represented as a pair of back-to-back T-junctions. 
 
 In order to better understand why a maximum in the nearest wall distance versus trajectory 
pose function indicates the presence of a wall gap, it is instructive to consider in detail two types of 
T-junctions: straight-T junctions and bent-T junctions. A straight-T junction is one in which the robot 
travels straight past a not taken path, as shown in figure 11. A bent-T junction is one in which the 
robot turns past a not taken path, as shown in figure 12.   

                                                           
1
 At this point, it is important to keep track of which side of the buffer data we are considering, i.e., data for the 

right side wall or for the left side wall. This information will be important later when we calculate the descriptor 
parameters. 
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Figure 11 
Straight T-junction 

 

Buffer 

Robot 

Distance to 

nearest wall 

Gap 



UNCLASSIFIED 

Approved for public release; distribution is unlimited. 

23 

 
 

Figure 12 
Bent-T junction 

 
 In figures 11 and 12, each solid rectangle represents the position of the robot at a point in its 
trajectory. The dashed lines on each side of a solid rectangle represent the distance from the “origin” 
of the robot to the nearest wall on its right and left side.  Here, the “origin” of the robot is defined as 
the center point of the robot projected down onto the ground plane. In both of these figures, the 
poses whose data is currently in the buffer are enclosed in a box labeled “buffer.” Both figures 
illustrate some meandering in the robot’s trajectory since in practice the robot often does meander 
somewhat as it drives. 
 
 Figures 11 and 12 illustrate the calculation of the nearest-wall-distance versus trajectory-
pose function. In particular, three functions of the robot position are examined to detect a gap 
 

 The distance of the “origin of the robot” to the nearest wall on its right  

 The distance of the “origin of the robot” to the nearest wall on its left and 

 The sum of these two distances  

 As these diagrams suggest, at locations where the robot drives along a straight hallway, the 
sum of the two distance functions is constant. However, at locations where the robot drives past, or 
turns onto, a wall gap, the sum of the two distance functions exhibits a maximum. Thus, a maximum 
in the sum function indicates the presence of a gap. While the robot is traversing the gap, the sum 
function could take on a range of values, depending on the robot’s pose while in that region, and 
thus the sum function might not remain at its maximum value throughout the robot’s traversal of the 

Buffer 

Gap 
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gap. However, before entering the gap region, and after leaving it, the robot is in straight walled 
regions in which the sum function is constant.  
 
 A gap is a region comprised of two sections of straight path in which the sum function is 
constant for some distance, with a section in between these two sections that has an above-
threshold maximum value.  More specifically, the maximum must have all of these three criteria: 
 

1) At least three consecutive poses in the buffer have a constant sum function value 
equal to the hallway width 

 
2) These poses are followed immediately by a maximum value (compared to the three 

prior and later poses) that is larger than the hallway width by a user-selectable margin 
of deltaWidth 

 
3) Values in the buffer immediately following the maximum include at least three 

consecutive poses with constant sum function value equal to the hallway width 
 

 The process of deciding whether a sequence of poses contains a gap is illustrated in figure 
13, which shows a set of several consecutive columns of the buffer. Definitions of the data in the 
rows of the buffer are shown in figure 9. 
 

p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 

WR2 WR3 WR4 WR5 WR6 WR7 WR8 WR9 WR10 WR11 WR12 

    dR2 dR3 dR4     dR5 dR6 dR7     dR9 dR9 dR10     dR11 dR12 

WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10 WL11 WL12 

dL2 dL3 dL4 dL5 dL6 dL7 dL8 dL9 dL10 dL11 dL12 
 

Figure 13 
Identification of wall distance maximum in buffer 

 
 For illustrative purposes, the current pose is the tenth pose2, p10. The seven poses of p4 
through p10 are to be considered. The middle pose of this set, p7, is examined in order to determine 
whether it is a maximum. For p7  to be a maximum, the three criteria would be: 
 

(1) The sum function for each of p4, p5, and p6 is equal to the hallway width 
 

(2) The sum function for p7 is larger than the hallway width by a margin of deltaWidth 
 

(3) The sum function for each of p8, p9, and p10 is equal to the hallway width 
 
 Figure 14 shows the process for examining the buffer to determine whether a hallway 

segment has a gap in it. 

 

                                                           
2
 The data for p11 and p12 is shown in light gray because in our example, it has not yet been measured. 
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Figure 14 

Process for determining whether a hallway has a gap 
 
 At this point in the algorithm, a significant decision must be made that determines what kind 
of descriptor is to be calculated for the section of the trajectory that is currently traversed. The 
decision is whether there is a gap in one or more walls, and the answer is obtained using the 
process shown in figure 14. If a gap has been detected, then the wall gap data will be calculated to 
obtain the T-junction descriptor. If no gap has been detected, then an L-junction is sought. If an L-
junction is found, then corner data is calculated to obtain the L-junction descriptor. If neither a T-
junction nor an L-junction is found, then no descriptor is calculated at this point in the path. The 
following two sections present the derivation of the T-junction and L-junction descriptor, respectively. 
 
 T-Junction Descriptor Derivation 
 
  The section of the algorithm that deals with derivation of the T-junction descriptor is 
arrived at if and only if a gap has been detected in the right or left wall, as determined by evaluating 
the three characteristics specified in the previous section.  
 
 The seven consecutive poses comprised of the current pose plus the previous six poses 
have been found to contain a maximum that indicates a wall gap. This set of poses is now examined 
in order to find parameters of the T-junction descriptor.  With reference to figure 13, the set of poses 
p4, p5, and p6 is referred to as the “BEFORE” region, the pose p7 is referred to as the “DURING” 
region, and the set of poses p8, p9, and p10 is referred to as the “AFTER” region.  
 
 The next step is to find which poses correspond to the endpoints of the gap. The endpoints 
are designated as the last pose of the “BEFORE” region and the first pose of the “AFTER” region.  In 
our example, the gap endpoints would be p6 and p8.  This pose information will be used to look up 
the corresponding wall information in the buffer to more precisely determine the endpoints and 
location of the gap.   
 
 The buffer contains information about the walls on both sides of the robot – the right wall as 
well as the left wall. So, first verification is needed as to which side of the robot the gap is, and then, 
it can be determined which data to retrieve from the buffer. When the search of the buffer for maxima 
began, it started with the examination of the right side wall data, and then the left side wall data as 
described earlier. Using this information allows the side of the robot on which the identified gap 
exists to be determined. 
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 Suppose, for illustrative purposes, that a gap has been found on the right side of the robot. 
We now retrieve the wall data for the gap endpoints, i.e., the wall data for poses p6, p7, and p8, which 
is WR6, WR7, and WR8. The wall data stored in these variables is the endpoints of the wall segment 
and the normal vector (in the floor plane) to the wall segment. The gap endpoints are the endpoints 
in WR6 and in WR8 which are closest to p7. The gap vertex is the midpoint between these two 
endpoints.  
 
 The remaining descriptor data that needs to be calculated is the time at which the vertex was 
traversed and the angle and width of each leg of the traversed junction. The time at which the vertex 
was traversed is the time associated with the “DURING” pose, which in our example is p7.  This is 
the pose at which the robot was actually traversing the gap.  
 
 The angle and width of the traversed legs are derived from the wall segment coordinates of 
the wall segments adjacent to the gap.  In our example, the two legs are the leg that spans poses p4 
to p6 and the leg that spans poses p8 to p10.  For the leg that spans poses p4 to p6, these wall data 
variables store the relevant information: WR4, WR5, WR6, WL4, WL5, and WL6. Each of these variables 
contains the endpoints and the normal vector for the particular wall segment.  Many different 
geometric approaches could be used to derive the angle and width of this leg. One possible 
approach is to find a best fit line segment to the right-wall segments (WR4, WR5, WR6) and a best fit 
line segment to the left wall segments (WL4, WL5, WL6). Then, the normal angle of the leg would be 
the mean of the normal’s of the two best fit line segments, and the width of the leg would be the 
mean distance between the two best fit line segments. 
 
 At this point, we have derived all the descriptor parameters that we need for the T-junction 
descriptor. These parameters are summarized in table 4. 
  

Table 4 
T-junction descriptor parameters 

 
The fact that the junction is a T-junction 

Vertex coordinates 

Coordinates of the start and end points of the gap 

Angle of each traversed leg of the junction 

Width of each traversed leg of the junction 

Time when gap was traversed 

 
 The process for deriving the parameter values for a T-junction is summarized in figure 15. 
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Figure 15 
Procedure for calculating T-junction descriptor parameters 
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 L-Junction Descriptor Derivation 
 
  The algorithm reaches this point if and only if neither wall on the sides of the current 
pose has a gap in it. In this case, there are two possibilities – either the hallway is straight at this 
point, or it has an L-junction, i.e., a simple turn with no side paths. Therefore, the next task is to 
determine which possibility is the case. This is determined by calculating the wall angles for the right 
and left walls.  
 
 The overall procedure for doing this is as follows. Each element of the buffer is examined to 
search for the presence of corners, i.e., nonstraight sections of the walls (recall that the buffer 
contains wall data collected at the current pose and at the past ten poses). The algorithm searches 
for corners by examining the wall data from each pair of adjacent poses in the buffer to look for 
deviations from straightness. For this discussion, let n̂Li

  be the unit normal vector for wall segment 
WLi, and let n̂Ri be the unit normal vector for wall segment WRi.  Figure 16 uses this notation to 
illustrate these definitions of wall normal vectors.    
 

                     

 

 
Figure 16 

Wall normal vectors for path straightness calculation 
 
 The algorithm calculates the difference vector between the normal’s for each pair of 
consecutive right wall segments, and same for the left wall segments. The squared magnitude of the 
right and left difference vectors is  
 
                              (12)  

                            (13)  

 These difference vectors are calculated for each pair of adjacent wall segments in the buffer. 
The algorithm determines whether, for any pair of adjacent wall segments, both  ij, right and  ij, left are 
larger than the user-specified threshold value cornerAngleThreshold.  
 
 If no such adjacent pair of wall segments has difference vector magnitudes this large, then 
we conclude that the buffer contains no corners, and the robot continues traveling with no further 
calculation being done at the current pose. Otherwise, the next task is to derive the descriptor 
parameter values for each found corner that has not already been cataloged in the Junction 
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Database.  For each found corner, the following parameters are calculated: location of the vertex, the 
time it was traversed, the width of each leg of the corner, and the angle between the two legs of the 
corner. 
 
 The location of the vertex of the corner is illustrated by the “V” in figure 16. In particular, the 

vertex is the midpoint between (1) the intersection point between right wall segments i and j, and (2) 
intersection point between left wall segments i and j. Just as the location of the vertex is determined 
through interpolation, so is the time of vertex traversal. That time is defined as the midpoint between 
the times of pose i and of pose j. 
 
 The next task is to find the widths of each leg of the corner. The endpoints of wall segments i 
and j can be retrieved from the elements WRi and WLi for leg i, and from WRj and WLj for leg j. The 
width of each leg can be found from this data in a variety of ways. One way to do it is to find the 
average distance between the two walls associated with pose i, and the same with pose j.  
 
 Finally, the angle between the corner’s two legs, as well as the orientation of each leg, has to 
be determined. This angle can be determined from the normal vectors for the wall segments.  The 
corner angle is the average between two angles: (1) the angle between the normal vectors of the 
left-side walls, i.e., angle (n̂Li , n̂Lj), and (2) the angle between the normal vectors of the right side 
walls, i.e.,  angle (n̂Ri , n̂Rj). Viewing figure 16 can make these expressions easier to understand. The 
orientation of leg i is the average of the normal vectors of the right and left walls at pose i, i.e.,   ½ (n̂Li 
+ n̂Ri). Similarly, the orientation of leg j is ½ (n̂Lj + n̂Rj). 
 
 At this point, all the descriptor parameters for a particular L-junction corner have been 
calculated, and the descriptor is cataloged in the Junction Database.  Table 5 summarizes the 
parameters that are cataloged for an L-junction. 

 
Table 5 

L-junction descriptor parameters 
 

The fact that the junction is an L-junction 

Vertex coordinates 

Vertex angle 

Leg orientations 

Leg widths 

Time when corner was traversed 

 
 Now that the descriptor data for a particular L-junction has been calculated and cataloged, 
the algorithm can go on to calculate these same parameters for the next corner until all corners 
observed at the current pose have been cataloged. The process for deriving the parameter values for 
an L-junction is summarized in figure17.  
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Figure 17 

Procedure for calculating L-junction descriptor parameters 
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 Descriptor Comparison Process for LT-Junction Based Algorithm 
 
  At this point in the algorithm, we have just cataloged in the Junction Database 
whichever type of junction that has just been found – either a T-junction or an L-junction.  Table 6 
summarizes the parameter values that are cataloged for each type of junction. 
 

Table 6 
Summary of descriptor parameters for L- and T-junctions 

 
L-junction T-junction 

Vertex coordinates Vertex coordinates 

Corner angle Coordinates of the start 
and end points of the gap 

Leg orientations Angle of each traversed 
leg of the junction 

Leg widths Width of each traversed 
leg of the junction 

Time when corner was 
traversed 

Time when gap was 
traversed 

 
 Before comparing the newly cataloged junction with previously cataloged junctions in the 
Junction Database, it is useful to narrow down the set of junctions in the database that will be used in 
the comparison. Therefore, as done previously in the trajectory based algorithm, a search region is 
defined which is a subset of previously calculated descriptors to be used for descriptor comparisons. 
This subset would consist of the set of cataloged descriptors that are most likely to match the current 
descriptor. In the following discussion, the following terminology is used:  The “target descriptor” is 
denoted as CT, and the descriptor in the Junction Database with which the target descriptor is being 
compared is denoted as the “candidate descriptor” CC.  
 
 The first criterion for narrowing down the search set is that only candidate descriptors of the 
same type as the target descriptor are searched for. That is, if the target descriptor is for an L-
junction, then only candidate junctions that are also L-junctions are considered, and similarly for T-
junctions. After this initial screening process, the criteria listed in equations 3, 4, 5, and 6 are used to 
select which descriptors in the Junction Database are most likely to match the current descriptor and 
will therefore be compared in detail with the current descriptor.  
 
 Now that the four criteria for the search region have been applied, the Junction Database is 
examined to determine which, if any, candidate descriptors in it satisfy all of the search region 
criteria. If no candidates satisfy all four criteria, then no further calculations are done at this step in 
the trajectory, and the robot travels further. 
 
 However, if some candidates that do satisfy all four criteria are found, then these candidate 
descriptors are examined in order to determine how closely they match the target descriptor.  Figure 
18 shows the procedure for scoring the match between the target and candidate corners.  
 
 



UNCLASSIFIED 

Approved for public release; distribution is unlimited. 

32 

List of candidate 

junctions in 

search region; 

type of junction 

(L or T)

Do-loop for each 

candidate corner

Calculate L-

junction score, 

which is a 

weighted sum of 

the metrics

L-junctionbestScore = 1000

A more likely loop closure 

candidate will have a lower 

score, so initialize with a 

high score

score < 

bestScore?

bestScore = score;

bestCandidate = 

current candidate;

Continue on and 

consider next 

candidate

NO

Lowest score 

(bestScore) and 

its associated 

candidate 

(bestCandidate)

YES

Retrieve needed data 

from BUFFER

T-junction or L-

junction?

Calculate 

metrics for L-

junctions

T-junction

Calculate metrics and 

score for T-junction 

(see page [7])

 
 

 
Figure 18 

Scoring method for evaluation of target and candidate match for LT-junction based algorithm 
 
 The input to this process is the list of candidate junctions in the search region which are of 
the same type (T or L junction) as the target junction. Each candidate junction is scored according to 
the following process, first, the metrics and score for the match between the two junctions are found. 
This process is rather complex, and is described in detail in the next two sections – one for L-
junctions and one for T-junctions. Once the score is calculated for the currently considered 
candidate, then it is compared with the best score of all the previously considered candidates at this 
step in the trajectory. After all candidates have been considered, the output data for the candidate 
with the lowest score is calculated.  The output data of this method is derived from the descriptor 
data of the selected candidate junction and of the target junction. This output data is the vertices of 
the two junctions, and later in the algorithm it will be passed to a trajectory adjustment program. 
 
 The next two sections describe the details of the two sets of similarity tests to be used for this 
purpose – one set for L-junctions and one for T-junctions.   
 
 L-Junction Similarity Tests and Scoring 
 
  For L-junctions, four similarity tests are performed on the candidates to determine 
their similarity to the target descriptor:  (1) proximity of vertices, (2) similarity of corner angles, (3) 
similarity of corner orientations, and (4) similarity of junction leg widths. For each of these tests, a 
metric is calculated, and then a matching score is calculated as a weighted sum of the four metric 
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values. The metrics and matching score are defined in such a way that the lower the value, the 
better the match. The four metrics are defined  
 
 p                                                                                            (14)  

                                                                           (15)       

 
In these equations, the %diff function is defined 
 
                     -                (16)  

                            

                                                                                       
(17)  

 Here, the angle of the centerline of a corner is the average of the angles of the two legs of the 
corner. The fourth metric for comparisons of L-junctions is 
 
                       

                                                                                                     

                                                                                                                      

(18) 1 

 The first three of these metrics are the same as the similarity metrics for the trajectory based 
algorithm. The fourth metric deals with the legs of the corner, which is not relevant to the trajectory 
based algorithm.  This metric compares the two corners leg by leg and takes the average of the 
percent difference of the two leg widths.  
 
 The similarity score for the target and candidate corners is a weighted sum of the four 
different similarity metrics. A suggested weighting is  
 
 score =  

0.4 * proximityMetric +  

0.3 * cornerAngleMetric +  

0.15 * cornerOrientationMetric +  

0.15 * cornerLegWidthMetric  

(19)  

 T-Junction Similarity Tests and Scoring 
 
  T-junctions are much more complex than L-junctions. An L-junction has only two legs, 
and both of them are traversed by the robot. However, a T-junction has three legs, only two of which 
are traversed by the robot. The third leg of a T-junction is not traversed, so all that is known about it 
is that there is a gap in the wall at the location of that leg. These concepts can be better visualized by 
viewing figures 11 and 12.  
 
 The comparison process between two T-junctions is rather complex. The inputs to the 
process are a target T-junction and a candidate T-junction.  First, the proximity metric is calculated 
for the vertices of the two junctions.  



UNCLASSIFIED 

Approved for public release; distribution is unlimited. 

34 

 For the second metric, the two traversed legs of each junction are compared. If we call the 
two traversed legs in each junction leg i and leg j, then the following four leg pairs are compared to 
obtain preliminary scores 
 

target leg i and candidate leg i 

target leg i and candidate leg j 

target leg j and candidate leg i 

target leg j and candidate leg j 
 
 Each of these four leg pairs is compared in two ways – the leg angle and the leg width. In 
particular, for each leg pair, the percent difference for each of the two comparisons is calculated and 
added together. Both legs of the leg pair with the lowest preliminary score (recall that a low score 
indicates a good match) are tagged. That is, they are tentatively assumed to match each other.  The 
second metric records this lowest preliminary score.  
 
 The third and fourth metrics determine how well the untagged leg and gap of the target and 
candidate junctions compare. The third metric records the comparison between the target gap and 
the untagged candidate leg, and the fourth metric records the comparison between the candidate 
gap and the untagged target leg.  
 
 These four metrics are listed in equation form 
 
 proximityMetric =  

                                     ’                                   

        ’          

(20)  

 
 sharedLegMatchMetric =  

%diff (angle of target traversed leg, angle of candidate traversed leg) +  

%diff (hallway width of target traversed leg, hallway width of candidate 

traversed leg)  

(21)  

 
 targetGapCandidateLegMatchMetric =  

%diff (target gap width, candidate leg width) 

(22)  

 
 candidateGapTargetLegMatchMetric =  

%diff (candidate gap width, target leg width) 

 

(23)  
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 The similarity score for the target and candidate corners is a weighted sum of the four 
different similarity metrics. A suggested weighting is 
 
 score =  

0.4 * proximityMetric + 

0.3 * sharedLegMatchMetric +  

0.15 * targetGapCandidateLegMatchMetric +  

0.15 * candidateGapTargetLegMatchMetric 

(24)  

The process for calculating the metrics used to derive this matching score for T-junctions is shown in 
figure 19. 
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Figure 19 
Procedure for calculating matching score for T-junctions 

 
 Derivation of Output Data for LT-Junction Based Algorithm 
 
  The outputs of the scoring method for evaluation of target and candidate matches, 
shown in figure 18, are the candidate that best matches the target junction and the matching score. 
At this point in the algorithm, the next step is to compare this matching score with a user-specified 
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threshold value, smax. If the score is greater than smax, i.e., worse than the threshold value, then no 
further calculations are performed at this step of the trajectory, and the robot travels further. 
Otherwise, the output data of the entire algorithm is calculated. 
 
 For the LT-junction based algorithm, the output data is simply the (x, y) coordinates of the two 
vertices – the vertex of the target junction and the vertex of the selected candidate junction, as well 
as the matching score. This is the output regardless of whether the junction is an L-junction or a T-
junction.  Orientation data from the descriptors is not part of the output since it is up to the trajectory 
adjustment program (to which data from this algorithm is passed) to figure out the optimum 
orientation of the target pose and candidate pose in the adjusted map. The complete set of output 
data for the LT-junction based algorithm is shown in table 7. 

 
Table 7 

Output data for LT-junction based algorithm 
 

Target descriptor 

Candidate descriptor 

Matching score, score 

 
 Overall Summary of LT-Junction Based Algorithm 
 
  Table 8 summarizes the user-selectable parameters for the LT-junction based 
algorithm.  

 
Table 8 

List of selectable parameters for LT-junction based algorithm 
 

Parameter description Variable name Assumed value, 
if any 

Robot’s step distance Δp  

Number of elements in buffer  11 

Threshold for nearest wall distance function in gap 
detection for T-junctions 

deltaWidth  

Threshold for difference in wall segment angle 
difference in L-junction detection 

cornerAngleThreshold  

Minimum time for search region tmin  

Maximum time for search region tmax  

Minimum distance for search region dmin  

Maximum distance for search region dmax  

Threshold score for place recognition candidates smax  

 
 Figure 20 shows a high level overview of the entire LT-junction based algorithm. An 
advantage of this algorithm is that it makes use of wall data that is available in walled environments 
to help make a place recognition decision.  This is in contrast to the trajectory based algorithm, which 
does not make any use of wall data. A limitation of the LT-junction based algorithm is that it deals 
only with L-junctions, T-junctions, and by extension, +-junctions. However, it cannot reliably deal with 
more complex junctions, i.e., those with five or more legs intersecting at a single vertex. 
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Figure 20 
High level flow chart for LT-junction based algorithm 
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General Junction Based Algorithm 
 
 This section describes, for the general junction based algorithm, the input data and its 
preprocessing, the feature descriptor and its derivation from the preprocessed input data, the 
descriptor comparison process, and the derivation of output data.  
 
 The general junction based algorithm is useful for place recognition and loop closure 
detection in situations in which a robot is driving in a network of featureless passageways, with 
nominally flat, parallel walls, that constrains its motion to either nominally straight line driving or 
turning from one path segment onto another. It uses hallway junction characteristics to label and 
compare visited places and to search for recognized places. 
 
 This algorithm detects junctions with, in principle, any number of hallway paths connected to 
them. Unlike the trajectory based algorithm and the LT-junction based algorithm, this algorithm does 
not maintain a sliding buffer to enable detection of junction features. Instead, it takes as an input a 
visual 2D image of a LIDAR scan of the region that the robot has traversed until the present time. An 
example is shown in figure 21. 
 

 
Note: Figure supplied by Joshua Wainer of Robotic Research, LLC 

 
Figure 21 

Typical input image for general junction based algorithm  
 
 The algorithm uses various image processing methods to extract junctions from the input 
image. It then catalogs each junction it detects into a database, and compares newly detected 
junctions to the junctions in the database in order to determine whether a place recognition event 
has occurred. 
 
 Input Data and Preprocessing for General Junction Based Algorithm 
 
  As with the trajectory based algorithm and the LT-junction based algorithm, this 
algorithm uses 2D data as its input.  In some ways, the general junction based algorithm is similar to 
the LT-junction based algorithm; both algorithms use LIDAR sensor data as their source of 
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information about environmental features. Both algorithms use wall data as descriptors of the 
environment. However, the two algorithms use different representations of wall data. 
 
 The LT-junction based algorithm represents walls in terms of distance from the robot to 
nearby walls and lengths of nearby wall segments as measured by a LIDAR sensor. Open source 
point cloud processing software (ref. 14) was considered for use in implementing this algorithm, 
specifically for identifying wall segments and determining the distance to them. There are some 
significant disadvantages to obtaining wall descriptor data directly from point cloud data. For long-
exposure (more than 1 sec or so) point cloud images, the wall edges appear fuzzy due to random 
fluctuations in the LIDAR data. It is difficult to identify wall edges in such images using point cloud 
data processing techniques. On the other hand, short exposure point cloud images exhibit clearly 
defined walls but data on these walls is quite sparse, and that makes it difficult to define the 
endpoints, and even the orientation, of wall segments.  Figure 22 shows a typical example of a short 
exposure point cloud image of a hallway junction. 
 

 
Note: Figure supplied by Joshua Wainer of Robotic Research, LLC 

 
Figure 22 

Short exposure image of hallway junction taken by LIDAR 
 

 In figure 22, a random sample consensus (RANSAC) approach from the Point Cloud Library 
was used to extract the walls. In this image, the robot is in the center of the junction facing toward the 
lower right corner of the image. To facilitate a qualitative evaluation of the image, the approximate 
location of the actual walls is denoted by dash-dot-dash lines. 
 
 Since both long and short exposure images are difficult to analyze using Point Cloud 
processing approaches, an alternative approach was considered. In this alternative approach, a 
visual (e.g., jpg format) image is formed from a long exposure Point Cloud image. Then, open source 
visual processing approaches (ref. 15) are used to extract hallway junction data from the visual 
image. This approach is advantageous because a mature and robust set of image processing 
procedures is readily available and could effectively extract junction information from the visual 

Approximate location 
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dash lines 
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images. In the remainder of this section, the image processing methods used to derive corner 
descriptors are presented. 
 
 A Gaussian blur (ref. 16) is used as an initial processing step in order to reduce the presence 
of artifacts in preparation for edge detection procedures. The scale size of the blur would be selected 
by examining a few typical long exposure Point Cloud images of the area to be mapped (or a 
different area with similar hallway dimensions) and noting the spatial scales of the hallway widths 
and of the noise artifacts in the hallway edges. 
 
 After the Gaussian blur is performed, the next step is to look for corners in the image. This is 
done using a Harris corner detector (ref. 17), e.g., by using the function cornerHarris in OpenCV. 
This function detects points with high gradients in both the x and y directions. The function returns 
the (x, y) coordinates of detected corners. It is possible that this function would return some spurious 
corners in addition to the genuine corners. Therefore, it is worthwhile to implement a step to filter out 
spurious corners, as a possible example (ref. 18) by using the smallest univalue segment 
assimilating nucleus (SUSAN) corner detector after the harris corner detector. However, even if 
some spurious corners pass through such a filtering stage, they will quite possibly be filtered out in 
future steps in the algorithm. 
 
 At this point the algorithm determines whether any genuine corners have been detected. If 
not, then no further calculation is done at this step of the trajectory, and the robot continues driving. If 
any genuine corners have been detected, then the following steps are performed for each detected 
corner in order to derive parameter values for the corner descriptor for that corner  
 

1. Define a region around the corner in which to search for line segments connected to that 
corner. These line segments will be included in the descriptor for this corner. This region 
should be small compared with the hallway width in order to avoid including segments from 
other parts of the hallway in the descriptor. 

 
2. Within that region, extract edges connected with the corner. A canny edge detector (ref. 19) 

from OpenCV can be used for this purpose. This function would return only an image 
consisting of detected line segments. We still need coordinates of these line segments. 

 
3. Represent edges as line segments and derive their endpoints. A probabilistic Hough 

transform (ref. 20) from OpenCV can be used for this purpose and gives as its output the (x, 
y) coordinates of the endpoints of each detected line segment. 

 
4. If any edges connected with the corner are found, record them for immanent use in 

populating the descriptor for this corner.  
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 Figure 23 illustrates the definitions for the various types of hallway feature that may be 
detected like corners, vertices, and wall segments. 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 23 

Terminology for hallway features 
 

 A corner is treated as an object comprised of a vertex and two segments. A vertex is an (x, y) 
point. A side is a data structure comprised of two (x, y) endpoints. In the hallway configuration 
example shown in figure 23, there are four corners: corner C1, comprised of vertex V1 and sides S1 
and S2; corner C2 comprised vertex V2 and sides S3 and S4; corner C3, comprised vertex V3 and 
sides S5 and S6; and corner C4, comprised vertex V4 and sides S7 and S8. In table form, the set of 
corners in figure 23 would be depicted as shown in table 9. 

 
Table 9 

Summary of corner objects in figure 23 
 
 

 
 
 
 
 
 
 

C1  C2  C3  C4 
V1 V2 V3 V4 

 S1  S3  S5  S7 

 S2  S4  S6  S8 

C1 

C2 

C3 

C4 

S1 

S2 

S3 

S4 S5 

S6 

S8 

S7 
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 The steps involved in the image processing stage of the algorithm are summarized in figure 
24. 
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Figure 24 

Summary of image processing stage of general junction based algorithm 
 
 Feature Descriptor and its Derivation for General Junction Based Algorithm 
 
  At this point in the algorithm, all corners in the current scan have presumably been 
identified and cataloged as shown in table 9. The next task is to search the identified corners to find 
hallways.  
 
 To accomplish this, the descriptors for each pair of detected corners are compared to 
determine whether there is a pair of sides, one from each corner, which together form a hallway. 
Each pair of corners Ci and Cj , is examined to determine whether it complies with all of the following 
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hallway criteria. These criteria indicate the presence of a corner plus a hallway comprised of one 
side from the corner 
 

 At least one segment from Ci is parallel to at least one segment from Cj, and 
 

 The two parallel segments are at least partially side-by-side (fig. 25), and 
 

 The two parallel segments are close enough to be considered a hallway, 
according to a user-specified threshold hallWidthThreshold, which is the 
maximum distance between two line segments for them to be considered a 
hallway 
 

 

 
 

Figure 25 
Illustration of side-by-side segments 

 
 The result of applying the hallway criteria to the hallway configuration in figure 25 is the 
following list of hallways 

H23: S2 – S3 

H15: S1 –S5 

H45: S4 – S5 

H67: S6 – S7 

H81: S8 –S1 

 The purpose of the next section of the algorithm is to determine data for, and catalog, the 
junction descriptors. Each junction Ji is an object comprised3 of the junction centroid (JCi), and the 

centerline segments {Lij} for each of the j legs. The junction centroid is an (x, y,) point. Each 
centerline segment is a data structure comprised of the centerline’s two (x, y) endpoints. At this point 
in the algorithm, the centroid and legs of the junction must be determined. If the scan contains more 

                                                           
3
 The time ti when the junction was traversed is not included in the descriptor here, although this information 

would be very useful, because it is not immediately clear how to obtain or preserve it from the image 
processing stage of the algorithm. 

Side-by-side 

Partially side-by-side 

Not side-

by-side 
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than one junction, then a descriptor is determined and cataloged for each junction. The remainder of 
this section describes how to derive the data for the junction descriptor. 
 
. The list of hallways that was previously compiled implicitly contains information about 
junctions. In the example, there is a T-junction that has as its legs H81, H67, and H15, and another T-
junction that has as its legs H15, H23, and H45. In general terms, this algorithm must now extract 
junction information out of the list of hallways. To do this, for simplicity, each hallway segment is first 
collapsed into the line segment which is its centerline. When the two segments are side-by-side, as 
defined in figure 25, it is clear how to define the centerline. When the two segments are only partially 
side-by-side, then the centerline is defined as the centerline between the side-by-side portion of the 
two segments, as shown in figure 26. 
 

 
 

Figure 26 
Definition of centerline for partially side-by-side segments 

 

 Now that there is a set of centerlines, the two end points of each centerline can be extracted. 
Once the set of centerline endpoints is established, the algorithm looks for clusters of two or more 
points that are closer together than the typical hallway width. This closeness indicates the presence 
of a junction.  Figure 27 illustrates the identification of clusters of centerline endpoints in the context 
of our hallway example and shows how these clusters indicate the presence of junctions. 
 

 

 

 

 

 

 

 

 

 

 

Center line 
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Figure 27 

Identification of clusters from centerline endpoints 
 
 A user-defined threshold, clusterThreshold, specifies the maximum distance between 
centerline endpoints for the points to be considered part of the same cluster.  
 
 Once all the endpoint clusters have been identified, the centroid of each cluster is calculated, 
and these centroids will be designated as the vertices of junctions. At this point, the algorithm makes 
note of how many junctions have been identified. This will be important later when comparing the 
target scan with candidate scans – the comparison process depends on whether there is only one 
junction in each scan, or whether each scan has multiple junctions. 
 
 Now, all the parameters in the junction descriptor can be calculated. To do so, each junction 
centroid is associated with the legs of the junction, which are the centerline segments connected 
with each of the centerline endpoints in the cluster from which the centroid was derived. It is possible 
for a particular centerline to be part of more than one junction. For example, figure 27 shows a 
vertical line segment that is part of both junctions. The complete junction descriptor(s) is now stored 
in the Junction Database in preparation for performing junction matching processes.  Table 10 
shows all the components of the junction descriptor. 
  

Clusters 
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Table 10 
Junction descriptor parameters for general junction based algorithm 

 
Name of junction,  Ji 

Junction centroid, JCi 

Leg 1 endpoints, Li1 

Leg 2 endpoints, Li2 

Leg 3 endpoints, Li3 

(data on more legs, if any) 

 
 The steps involved in the image processing stage of the algorithm are summarized in figure 
28. 
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Figure 28 
Summary descriptor derivation stage of general junction based algorithm 



UNCLASSIFIED 

Approved for public release; distribution is unlimited. 

48 

 Descriptor Comparison Process for General Junction Based Algorithm 
 
  As in the trajectory based algorithm and the LT-junction based algorithm, only a 
subset of candidates in the Junction Database is searched for potential matches to the candidate 
junction(s). This subset consists of candidates whose location is within a specified region of the 
target junction.  In particular, if we define the coordinates of the target junction centroid as (CT.x, 
CT.y), and the coordinates of the candidate target junction as (CC.x, CC.y), then equations 5 and 6 
define the criteria for candidate junctions to fall within the search region. The purpose of the user-
specified parameter dmin is to filter out from consideration meanderings of the robot about its current 
position. The purpose of the user-specified parameter dmax is to filter out candidate corners that are 
very distant from the target corner in order to reduce computation time. If the traversal times of the 
junctions are included in the junction descriptors (see footnote 3), then additional criteria (eqs. 3 and 
4) can be used to further narrow down the search region.  
 
 The algorithm now determines (as described in further detail later) whether the Junction 
Database has any junctions within the search region that has just been determined. If the search 
region has no junctions, then no further calculation is done at this step of the trajectory, and the robot 
travels further.  If the search region does have some junctions in it, then each of these candidate 
junctions is compared with the target junction to evaluate how well it matches the target junction. In 
performing these comparisons, the algorithm determine how many junction matches there are, i.e., 
how many of the junctions in the target scan have well matching scans in the Junction Database.  
 
 The similarity test has three possible outcomes: {zero, one, or more than one} target 
junction(s) has a good match in the Junction Database.  If no target junction has a good match in the 
Junction Database, then no further calculation is done at this step, and the robot travels further. If 
one target junction has a good match, then the single junction matching procedure (described in 
detail later) is followed, which yields single junction output data. If more than one target junction has 
a good match, then the multi junction matching procedure (described in detail later) is followed, 
which yields single junction output data for each matching pair, as well as a multi junction matching 
score, which characterizes the overall matching quality of the set of individual matches. 
 
 In the multi junction case, it is important to calculate an overall matching score in addition to 
the individual matching scores, because it is possible that the individual junction pairs are well 
matched, but the total set of matches is not self-consistent.  Figure 29 illustrates such a case. 
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Figure 29 
Example of poorly matching multiple scans 

 
 In figure 29, the current scan has two junctions, and each has a good match in the Junction 
Database. Note that the T-junction in the current scan would have to be rotated slightly clockwise to 
match the corresponding junction from the database; whereas, the L-junction in the current scan 
would have to be rotated slightly counterclockwise.  Thus, each individual match is good, but the two 
matches are not self-consistent. That is, the T-junction and L-junction in the current scan are close 
together and have a certain alignment with respect to each other. However, the two junctions in the 
database do not have the same alignment with respect to each other, although they are not far apart 
from each other since they are both within the search region. A multi-junction match would show a 
poor overall matching score between the junctions in the current scan and the set of junctions from 
the Junction Database. In such a case, to maintain self-consistency in our output data, the junction 
pair with the highest score is found – in the example either the pair of T-junctions or the pair of L-
junctions – and return only that pair together with its score as output data.  
 
 If more than one junction in the current scan has a good match in the Junction Database, and 
the multi-junction match is good, then all well-matching junction pairs (with their matching scores) 
are passed as output data.  Figure 30 summarizes the overall descriptor matching process. The 
single junction and multi-junction matching procedures are described in more detail in later sections. 
 
 
 
 
 
 

Current Scan 

Set of matching junctions 
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Figure 30 
Overall descriptor matching process 
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 The similarity test for determining how many junction matches are present is now described. 
For each target junction in the current scan, each of the candidate junctions in the search region is 
compared with the target junction under consideration.  The following procedure is used to evaluate 
how well each pair of junctions matches.  
 
 The first consideration is whether the two junctions have the same number of legs. This is 
very easily determined by comparing the number of elements in the two descriptors. If the two 
junction descriptors do not have the same number of legs, then this candidate junction is not 
considered further, and the next candidate junction is considered.  
 
 If the two junctions do have the same number of legs, then an orientation metric is calculated 
for the pair of junctions as follows. First, the translation between the two junction centroids is 
calculated so that the two junctions can be (conceptually) overlaid one on the other. Then, the listing 
of legs in each descriptor is reordered according to each leg’s orientation angle (if the legs in the 
descriptors are not already ordered in this way). This ordering enables pair wise matching of the legs 
between the two descriptors.  
 
 The next step is to (conceptually) rotate the candidate junction about the overlaid centroids 
by increments of deltaTheta, a user-specified parameter, until a full 360-deg rotation has been made. 
Figure 31 illustrates an example of the overlay of two T-junctions, one of which has 90-deg angles, 
and one of which does not have 90-deg angles. At each increment of rotation, the squared difference 
between the angles of each pair of legs is calculated. Then, these squared differences are summed, 
and the sum is square rooted. This square root value is the score for that overlay angle. After all 
overlay angles have been considered, the maximum score is found, and that score is the metric that 
shows how well the two junctions match.  
 

 

Figure 31 
Overlaid junctions at a particular increment of rotation 
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 Figure 32 summarizes the process for calculating the orientation metric. 
 
 

Orientation 

metric 

calculation

The input to this section is 

a pair of individual junction 

descriptors: one from the 

target scan, and one from 

the SEARCH REGION. 

Both descriptors have the 

same number of legs.

Overlay the candidate 

junction on top of the 

target-scan junction  so 

that both centroids 

overlap

Rotate the candidate 

junction about the overlaid 

centroids by deltaTheta  

increments until 360 

degrees

For each pair of 

legs, calculate the 

squared difference 

between each of 

the leg angles with 

respect to the 

common centroid

Order the listing of 

legs in both junction 

descriptors in order 

of leg angle – from 

low to high

End of loop over 

deltaTheta  

increments

Calculate the 

square root of the 

sum of  the 

squared 

differences

Find the minimum 

root sum of  

square angle 

difference for all 

the rotation angles

orientationMetric

 
Figure 32 

Orientation metric calculation 
 
 At this point in the algorithm, if a more complex junction matching metric is desired, it could 
be calculated here. Otherwise, processing is completed for this particular junction pair, and now, the 
next candidate junction is considered. After all of the candidate junctions for this target junction have 
been considered, the candidate match with the best matching score, orientationMetric, is identified.  
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 The score is compared with a user-defined threshold, angmax, to determine whether this 
match is good enough to be considered a place recognition event.  If the score is greater than 
angmax, then even the best matching candidate junction is not a close match to the target junction 
under consideration, and it is assumed that this target junction represents a place that has not yet 
been visited. If the score is less than angmax, then the candidate junction and target junction pair 
that achieved this match is preserved for further processing. However, first, any additional target 
junctions in the current scan are considered in the same way as was the first target junction.  That is, 
the algorithm determines whether each additional target junction has a well matching (i.e., matching 
score < angmax) candidate junction in the Junction Database. The output of this whole junction 
comparison test is a set of target junction candidate junction pairs whose matching score is less than 
(i.e., better than) angmax. 
 
 The algorithm now determines whether there is zero, one, or more than one target junction 
that has a good match with some candidate junction.  If there are no matches, then no further 
processing is performed for this pose in the trajectory, and the robot travels further. If there is one 
match, then the single junction output data (which has just been determined) is assembled and 
prepared for passing to an external trajectory adjustment program.  The single junction output data is 
summarized in table 11. 

 
Table 11 

Output data for general junction based algorithm, single junction case 
 

Target junction descriptor 

Candidate junction descriptor 

Matching score, orientationMetric 

 
 If there is more than one match, then the multi-junction matching process, described later, is 
now followed. Figure 33 summarizes the similarity test that has just been described for finding well-
scoring matches between the set of all target junctions in a scan and the set of junctions in the 
Junction Database. 
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Figure 33 

Similarity test for target junctions of a particular scan 
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 Multi-Junction Matching Procedure 
 
  The multi junction alignment process is now described. This process is reached if and 
only if more than one target junction in the current scan has a well-scoring candidate junction to 
match it. In this case, although each target junction has a good match, all of these matches must be 
self-consistent. The purpose of the multi-junction alignment process is to determine an overall 
matching error for the set of matches. This data enables a later part of the algorithm (fig. 30) to 
decide how to deal with a case in which the overall matching score is poor. 
 
 The input to the multi-junction matching process is the set of descriptors of target junctions, 
along with their well matching candidate junctions. The first step is to calculate the overall centroid 
CJ for the set of target junction centroids and the overall centroid CD for the set of candidate 
thresholds. Figure 34 illustrates the calculation of the overall centroids, CJ and CD. 
 

 
 

Figure 34 
Definition of overall centroids 

 
 Now, the 2D vector, r = CJ - CD,  is calculated. The entire set of candidate junctions is 
translated by the vector r so that the two centroids CJ and CD overlap (conceptually). The remainder 
of the comparison process is similar to the process of comparing just one pair of junctions. Thus, the 
translated set of candidate junctions are rotated in increments of deltaTheta around the common 
centroid until a full 360-deg rotation has been made. The goal of this set of rotations is to determine 
whether the set of best-match candidates is self-consistent with the layout of junctions in the target 
scan. By doing these rotations, we find the rotational angle that gives the best match of the set of 
candidate scans to the set of target scans. This metric will be used to evaluate the self-consistency 
of the set of high-scoring candidate junctions. 
 
 For each increment of rotation, a distance measure (defined later) between each junction pair 
is calculated. Then, these distance measures are summed up over all the junction pairs that are 
being considered. To prepare for calculating the distance measure between a particular junction pair, 
each leg of the set of target-scan junctions is matched with a corresponding leg of the selected set of 
candidate scan junctions. This association is illustrated in figure 35.  
 

X 

X 

Target junctions 
{Ji} 
 

Best-match junctions 

from JUNCTION 

DATABASE {Di} 

Centroid of 

junction 

centroids 

Junction 

centroids Junction 

centroids CJ 

CD 



UNCLASSIFIED 

Approved for public release; distribution is unlimited. 

56 

 
 

Figure 35 
Association between target junctions and database junctions 

 
 The target junctions are denoted as J1 and J2, and the corresponding candidate junctions are 
denoted as D1 and D2.  Figure 35 illustrates the matching process, which includes the junction pairs 
(J1, D1) and (J2, D2). Note that the two members of each pair were matched with each other earlier in 
this algorithm – the selected database junction was determined to be the best match with the target 
junction. 
 
 Now that each target junction is matched with its corresponding database junction, the 
individual legs from each junction must be matched with each other. To do this, the legs in each 
junction descriptor are ordered according to their angle, if this has not already been done. Then, the 
legs are matched pair-wise in a way that minimizes the total angle difference between all the leg 
pairs. This leg matching process is illustrated in figure 36. 
 

 
 

Figure 36 
Leg matching process for two junctions 
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 Figure 36 shows how, for each junction J1 and D1, the legs are ordered according to their 
angle with respect to the centroid of their own junction and a horizontal axis.  
 
 Now that each leg pair is defined, the distance measure between the two legs in each pair is 
calculated. Since each leg is a line segment, and the two line segments are in general not parallel, 
the distance between them is not well defined. This algorithm proposes a definition of distance 
between two line segments, and this definition will be used to calculate the overall similarity between 
the multiple junction pairs. Using the terminology shown in figure 37, the following procedure is used 
to calculate the distance measure between the two non parallel line segments, S1a – S1b and 
segment S2a to S2b. 
 

 

Figure 37 
Terminology for calculation of distance between two line segments 

 
 Let the nearest points of the two segments be called S1a and S2a 

 
 Let the farthest points of the two segments be called S1b and S2b 

 
 The non-parallel distance between the two segments is  

 
 

                                                (25)  

where dist is the 2D euclidian distance function between the two points which are its arguments. It is 
possible to use other distance functions as well.  
 
 Now that the distance measure between each individual leg pair has been defined, the total 
distance measure between all leg pairs in the junction is calculated. This concludes the processing 
for a particular junction pair. This distance measure calculation is repeated for all junction pairs 
under consideration, and the sum total over all junctions is calculated. 
 
 Once the total distance measure between all junctions has been found for a particular 
increment of rotation, the next increment of rotation is considered, and this distance measure 
calculation is repeated for the new increment of rotation. After an entire 360 deg worth of rotations 
has been considered, the angle with the lowest distance measure is found, and the overall matching 
score between the two sets of junctions is simply that distance measure. This matching score is 
called multiJunctionMatchingScore. 
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 This completes the calculations for the multi junction scenario, in which the target scan has 
more than one junction in it, and each of these target scans has a well-matching candidate junction 
in the Junction Database.  The multi junction output data is summarized in table 12. 
 

Table 12 
Output data for general junction based algorithm, multi junction case 

 
Target junction descriptor 

Candidate junction descriptor 

Matching score, multiJunctionMatchingScore 

 
 Figure 38 summarizes the similarity test that has just been described for finding well-scoring 
matches between the set of all target junctions in a scan and the set of junctions in the Junction 
Database. 
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Figure 38 

Calculation of multi-junction output data 
 
 At this point in the algorithm, it was shown how to calculate output data for two different 
scenarios: a single junction, or more than one junction, if the target scan has a well matching 
junction(s) in the Junction Database. The execution of all of the steps in figure 33, “similarity test for 
target junctions of a particular scan,” has been described. In the single junction scenario, the output 
data (table 11) is passed to an external trajectory correcting program, and the robot travels further. 
 
 In the multi-junction scenario, a bit of further processing is required.  This processing is 
shown in figure 30. At this point, multiJunctionMatchingScore is compared with a user-specified 
threshold value, distmax, to determine whether the total set of target junctions has a good alignment 
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with the matching set of candidate junctions. If multiJunctionMatchingScore is less than (i.e., better 
than) distmax, then all junction pairs with their matching scores are passed to an external trajectory 
correcting program. Otherwise, if multiJunctionMatchingScore is greater than distmax, then, as 
described earlier (see fig. 29 and accompanying discussion), only the best matching pair and its 
matching score are passed to an external program. In either case, once the output data is passed to 
the external program, that completes the processing for this step, and the robot travels further. 
 
 Overall Summary of General Junction Based Algorithm 
 
  Table 13 summarizes the user-selectable parameters for the general junction based 
algorithm.  
 

Table 13 
List of selectable parameters for general junction based algorithm 

 
Parameter description Variable name 

Maximum distance between two line segments to 
be considered a hallway 

hallWidthThreshold 

Maximum distance between centerline endpoints 
for them to be considered part of a cluster 

clusterThreshold 
 

Minimum distance for search region dmin 
Maximum distance for search region dmax 
Increment of rotation angles when testing overlay 
of two junctions 

deltaTheta 
 

Threshold score for place recognition candidates angmax 
 

 
 

RESULTS AND DISCUSSION  
 

 This report presents three algorithms that can be used for automated place recognition in 
featureless, walled environments. It presents a new type of environmental descriptor that can be 
used to characterize featureless, walled environments such as featureless tunnels and building 
hallways. They could also be used in feature rich environments to add an additional method for 
confirming the validity of a place recognition decision.  
 
 The report also presents a descriptor matching process for the new descriptors. The 
algorithms include an approach for descriptor comparisons that is tailored to the new descriptors. 
They give as their output data the newly measured descriptor, the previously measured descriptor 
which has been identified as a match to the current descriptor, and a matching score that tells how 
closely matched the two descriptors are. This output can be passed to an external program that 
creates a map of the environment in real time.  
 
 The pair of descriptors that is passed to the external program constitutes a constraint in the 
network of nodes that represent each visited place. The matching score represents the strength of 
this constraint. 
 
 Each of the three algorithms has its own advantages and specific capabilities. The trajectory 
based algorithm is the simplest of the three – it uses only IMU data and does not depend on LIDAR 
data. This is both a strength and a weakness. It is a strength in that it could be implemented on a 
computationally constrained platform, perhaps even a smartphone, since the data it uses is very 
simple. On the other hand, it is a weakness since the algorithm does not take full advantage of the 
available data in case the robot has additional sensors on it such as LIDAR. It relies only on the 
trajectory, and implicitly on a walled structure that constrains the robot’s motion, to extract 
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information about the environment. This is not, in general, a very robust approach to place 
recognition. 
 
 These weaknesses prompted development of the next algorithm, the LT-junction based 
algorithm. This algorithm uses distance-to-nearest-wall data as measured by LIDAR or some other 
ranging device. This usage of wall data makes the algorithm more robust than the trajectory based 
algorithm. However, the algorithm detects only L- and T-junctions, and by extension to +-junctions, 
which can be represented as a pair of back-to-back T-junctions. It cannot detect and form descriptors 
for more complex junctions, such as star shaped junctions.  
 
 The general junction based algorithm is a more robust algorithm than the LT-junction based 
algorithm. It uses mature and efficient image processing methods to extract data about even 
complex junctions. Furthermore, it presents a new type of junction comparison method – it allows 
multiple junction pairs to be compared both individually and simultaneously as a group. The group 
comparison method allows checking multiple junction pairs for self-consistency, which adds 
robustness to the algorithm. However, all this added robustness comes at a computational cost.   
 
 Consideration of this set of three approaches allows the user to select an operating point in 
the trade space of computational simplicity versus robustness. 

 
 

CONCLUSIONS 
 

 The three algorithms presented here represent a set of three approaches to place recognition 
in featureless, walled environments, which is a very challenging type of environment for place 
recognition. This difficulty is easy to conceptualize by imagining oneself in a featureless tunnel 
network such as the one shown in the following figure. 
 

 
 

Example of a featureless tunnel environment 
 
 It would be very easy for a human to become disoriented and lost while walking in such an 
environment. Robots navigating in such environments have similar difficulties, and they are 
technically difficult to address. Many types of feature descriptors have been presented in the 
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technical literature, but environments like the one shown in the figure have very few unique 
instantiations of such descriptors.  
 
 The trajectory and junction based descriptors presented here, and the methods for 
comparing them, enable place recognition even in feature poor environments such as that shown in 
the figure. Thus, these descriptors and methods expand the frontiers of what type of environments 
can be accurately mapped by robots with inertial measurement units and possibly light detection and 
ranging (LIDARS). When used together with a place recognition system for featured environments, 
these algorithms can supply the missing piece for an all-environment mapping system. 

 
 

RECOMMENDATIONS 
 

 Since these algorithms have not been implemented as of the date of this report, the author 
recommends implementing the algorithms in code, finding optimal values of the user-specified 
parameters, and testing their performance to verify and quantify their strengths and weaknesses. 
 
 Regarding the computational platform in which the algorithm will reside, the author 
recommends implementing the trajectory based algorithm in a smartphone or other such 
computationally constrained platform to test its effectiveness with such constrained resources. The 
LT-junction based algorithm and the general junction based algorithm are expected to require more 
computational resources, so they could be implemented in a computer that is integrated into a robot. 
 
 Once the algorithms have been thoroughly characterized via experiments, the author 
recommends integrating one or more of them into an external mapping program that adjusts the 
trajectory in real time based on place recognition events. 
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LISTS OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 
2D  two-dimensional 
GNSS  global navigation satellite system 
GPS  global positioning system 
IMU  inertial measurement unit 
LIDAR  light detection and ranging  
RANSAC random sample consensus 
SLAM  simultaneous localization and mapping 
SUSAN smallest univalue segment assimilating nucleus 
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